Teaching hands-on quantum computing to youth through workshops

Prashanti Priya Angara

PhD Candidate

Department of Computer Science

University of Victoria

June 2, 2023

Angara et al., Teaching Quantum Computing to High-School-Aged Youth: A Hands-On Approach: https://ieeexplore.ieee.org/abstract/document/9613752

Outline

- Motivation
- Effective Teaching strategies
- Design and delivery of workshops
- Our observations
- Upcoming workshop "Demystifying quantum enigmas: a hands-on introduction to quantum computing"

Why should we teach quantum computing at a high-school level? Why does it matter whether people understand anything about quantum computing?

Motivation

Why is quantum computing important?

Computing

Making physics do the hard work since 1822

Computing

Making physics do the hard work since 1822

Computing

Making physics do the hard work since 1822

6

Quantum is interdisciplinary

Why does it matter whether people understand anything about quantum computing? What changes are likely to happen due to developments in quantum computing?

Potential to revolutionize

- Chemistry: simulating molecules, efficient fertilizer production, designing catalysts
- Cryptography: integer factorization, key distribution
- Optimization: Supply chain logistics, portfolio optimization
- And many other fields ...

Size of the problem

Our workshops

Goals, strategies, and observations

Goals of our workshops

- Long-term: Expose youth to quantum computing concepts early to provide career path choices
- Increase diversity: Attracting a diverse student body remains a challenge, early education helps
- Provide training resources: a significant amount of trained personnel are needed in the coming years
- Help K-12 curriculum development: we show how to involve youth in quantum computational thinking as early as possible

Effective teaching strategies

- Unplugged activities
- Practice Sheets
- Programming
- Quantum Games

Linear algebra and complex numbers

- Prerequisites for understanding the mathematics involved in quantum computing are rarely taught in high schools
- How do we teach high-schoolers?
 - Use only real numbers

Unplugged activities

Practice sheets

Programming

- IBM Circuit Composer
 - Python + Qiskit

Quantum Games

Design and delivery of workshops

Introduction	Journey of a qubit: A quick introduction
	Main concepts: Qubits, Superposition, Entanglement, Measurement, Quantum Gates
	Create IBM accounts, setup environment
	Hands On: Circuit Composer
Journey through the quantum stack	Quantum Software: Hands On: Quantum gates and circuits
	Quantum applications with a focus on hybrid quantum-classical techniques
Pathways into Quantum Computing	Panel Discussion: How did you get into quantum computing?
	Q & A with students

Sample of a one day workshop schedule

Our observations

Teaching strategies: A mix of strategies helped for an interactive learning experience.

Engagement and participation: Interaction among participants lead to high student satisfaction.

Diversity: Attracted interest from various age groups, promoting collaboration and synergy.

Our observations

Props and handouts: unplugged activities and practice sheets for reinforced learning.

Programming: The composer was easy to use, Jupyter notebooks and python had lower levels of comfort

Gamification: "Entanglion" game enjoyed by students, although its complexity and timing posed challenges in identifying learned concepts.

Panel discussion: Rich discussion into careers in quantum

Take home messages

Why should we teach quantum computing at a high-school level? Why does it matter whether people understand anything about quantum computing?

- Preparing for the future
- Developing critical thinking and problem-solving skills
- Introducing interdisciplinary connections
- Broadening perspectives
- Encouraging creativity and innovation

Take home messages

Why should we teach quantum computing at a high-school level? Why does it matter whether people understand anything about quantum computing?

Resources

- Perry et al., Quantum computing as a high school module: https://www.osti.gov/biblio/1527395
- Qubit by Qubit: <u>https://www.qubitbyqubit.org/</u>
- Angara et al., Teaching Quantum Computing to High-School-Aged Youth: A Hands-On Approach: <u>https://ieeexplore.ieee.org/abstract/document/9613752</u>

Upcoming workshop

Demystifying the Quantum Enigmas A hands-on introduction to quantum computing

September 17, 2023 10:30am Online Workshop

> 15\$ registration fee Limited places available

https://qce.quantum.ieee.org/2023/

QUANTU